CHROM. 12,208

Note

Gas chromatographic separations of polyunsaturated fatty acid methyl esters on cyanoalkylpolysiloxane phases - a novel acetylenic-olefinic selectivity

.

G. R. JAMIESON, A. L. McMINN and ELlZ. H. REID *Chemistry Department, The Paidey College of Technology, Paisley PAI 2BE (Great Britain)* **(Received** June 27th, 1979)

For many years polyester-type stationary phases have been used for the gasliquid chromatographic separation of unsaturated fatty acid methyl esters (FAME)^{1.2} and tabulated retention data obtained on these phases have provided a rapid and convenient method for the tentative identification of these esters $3-5$.

A disadvantage of polyester phases is their relatively poor thermal stability^{6.7}. However, polar cyanoalkylpolysiloxanes, which are now readily available, have been found to have a greater thermal stability and to be suitable for FAME separations. Thus no significant variations in equivalent chain length (ECL) values were found over a period of 2 years with OV-225 and over 6 months with SILAR. 5CP and SILAR 1OC (ref. 8). It is claimed that any FAME separation obtained on polyester phases should be able to be carried out on the cyanoalkylpolysiloxane phases'.

Although FAME with cis-unsaturation give similar separations on both polyester and the cyanoalkyl phases, the latter type of phase has been found⁹⁻¹¹ to give enhanced *cis-trans* selectivity, the *trans*-isomer being eluted earlier than the *cis*-isomer. In the present paper we wish to report an acetylenic-olefinic selectivity on these cyanoalkyl phases, the acetylenic FAME being eluted earlier than would be expected from data obtained on polyester phases.

The tentative identification of polyunsaturated FAME has been facilitated by the use of tables of ECL values^{3.5}. These tables were generated from retention data obtained on polyester and modified polyester $(e.g., EGSS-X, EGSS-Y)$ phases and a preliminary investigation indicated that they were reasonably accurate for the cyanoalkyl phase, SILAR 5CP (ref. 12). However, it has also been reported⁷ that, with cyanoalkyl phases, experimental ECL values were appreciably different from the table values in some cases and it was presumed from this that the method used to generate the tables did not make sufficient allowance for the individual selectivity of the stalionary phases.

Some comparisons of experimental and table ECL values for C_{18} , C_{20} and \mathbb{C}_{22} polyunsaturated FAME on cyanoalkylpolysiloxane phases are given in Table I. The data include values obtained in our laboratory and also some calculated from ν ublished retention data. The differences (experimental $-$ table value) are similar to he differences found with polyester phases³ and in our opinion the tables of ECL .alues can be used with retention data from both polyester and cyanoalkyl phases.

The approach to the problem of correlating retention data with polyester phase

 α

TABLE I

COMPARISON OF ECL VALUES OF POLYUNSATURATED FAME ON CYANOALKYL POLYSILOXANE STATIONARY PHASES

* Present work.

TABLE II

COMPARISON OF ACETYLENIC FAME ECL VALUES ON CYANOALKYLPOLYSIL-**OXANE STATIONARY PHASES**

Column 1: 10% SP 2330 on Chromosorb W AW, 6 ft. \times 1/8 in. (Supelco, Bellefonte, Pa., U.S.A.); column 2: 15% OV-275 on Chromosorb P AW DMCS, $10 \text{ ft} \times 1/8 \text{ in}$. (Phase Separations, Queensferry, Great Britain). <u>.</u> and the company and a state of the state

* Reference 13.

NOTES 557

polarity was also found to be successful for lon_g-chain acetylenic methyl esters and computer-derived equations were obtained for three olefinic-acetylenic methyl esters 13 . When these equations were used with retention data obtained on cyanoalkyl phases it was found that there were significant differences between the experimental and calculated ECL values and that these differences were greater with a phase containing a higher percentage of cyanoalkyl groups (Table II).

It may be argued that these differences are due to a fault in our universal approach to correlation of liquid phase polarity and retention data since, in most cases, two structures with different methyl end-chains are being correlated, the standard of comparison being retention of 18:3 $n-3$. It may be more meaningful if the retention data of 18:3 6a, 9, 12 were compared with that of 18:3, 6, 9, 12 (18:3) $n-6$), since there is a close structural resemblance between these two compounds, the difference being the replacement of one of the olefinic groups by an acetylenic group. The linear relationship between $ECL_{18:3, 6a, 9,12}$ and $ECL_{18:3, n-6}$ on polyester phases (with a single point for Apiezon L included) is shown in Fig. 1. The corresponding data obtained on cyanoalkyl phases do not fall on this line. The acetylenic compounds have shorter retention times on the cyanoalkyl phase than would be expected from their retention behaviour on polyester phases. Lie Ken Jie¹⁴ published retention data on all the position isomers of methyl undecenoate and methyl undecynoate on various types of stationary phase and when the ECL values of the compounds with unsaturation in the 6-position $(i.e.$ in the middle of the chain) are compared (Fig. 2) then it is found that methyl undecynoate has shorter retention

Fig. 1. Relationship between ECL values of 18:3 6, 9, 12 and 18:3 6a, 9, 12 on various stationary zhases.

Fig. 2. Relationship between ECL values of methyl undec-6enoate (11: 1 6) and methyl undec-6 ynoate $(11:1)$ 6 a) on various stationary phases.

times on the cyanoalkyl phases XE-60 and SILAR IOC than would be expected from its retention on the other phases.

REFERENCES

- 1 H. H. Hofstetter, N. Sen and R. T. Holman, *J. Amer. Oil. Chem. Soc.*, 42 (1965) 537.
- 2 R. G. Ackman, *Prog. Chem. Fats Other Lipids*, 12 (1972) 167.
- 3 G. R. Jamieson and E. H. Reid, J. *Chromatogr.,* 42 (1969) 304.
- 4 G. R. Jamieson, in F. D. Gunstone (Editor), *Topics In Lipid Chemistry,* Vol. 1, Logos Press, London, 1970, p. 167.
- 5 G. R. Jamieson, J_ *Chronmtogr. Sci., 13 (1975)* 491.
- *6 0. W.* McReynolds, *J. Chrontatogr. Sci., 8 (1970) 685.*
- *7* R. V. Golovnya, V. P. Uralets and T. E. Kuzmenko, *Zh. Atrul. K/tint., 32 (1977) 340.*
- *8* R. V. Golovnya, V. P. Uralets and T. E. Kuzmenko, J. *Chrotnatogr., 121 (1976)* 118.
- 9 R. S. Henly, S. Ramachandran and S. L. MacKinley, *Gas-Ciwonz. NewsI.,* (Applied Science), 17 (1976) 1.
- 10 D. M. Ottenstein, D. A. Bartley and W. R. Supina, J. Chromatogr., 119 (1976) 401.
- 11 H. Heckers. K. Dittmar, F. W. Melcher and H. 0. Kalinowski, J_ *Chronzatogr., 135 (1977) 92.*
- 12 R. G. Ackman (private communication) reported in G. R. Jamieson, J. Chromatogr. Sci., 13 (1975) 493.
- 13 G. R. Jamieson and E. H. Reid, J. *Chronmtogr.,* 128 (1976) 193.
- 14 bf. S. F. Lie Ken Jie, J. *Chromatogr.,* 111 (1975) 189_
- 15 J. J. Myher, L. Marai and A. Kuksis, *Anal. Biochenz.,* 62 (1974) 188.